tp钱包app官网下载|exm
腾讯企业邮箱
腾讯企业邮箱 购买高级功能 登录 下载 购买高级功能 登录 下载 登录 购买高级功能 立即注册 专业、安全的企业邮箱服务 立即注册 专业、安全的企业微信邮箱服务 立即注册 基础版 适合中小型企业使用 免费使用 立即开通 邮箱账号数无上限 1G邮箱容量 2G个人中转站 2G企业网盘 发送保密邮件 开放接口能力 邮件审核,邮件撤回 邮件备份,邮件归档 个性化登录,对外名片 赠送专有域名 专家在线服务 专业版 更多高级功能,适合所有类型企业使用 950 元/年起 立即购买 邮箱账号数无上限,VIP享有更多特权 无限邮箱容量 32G个人中转站 超大容量企业网盘 发送保密邮件 开放接口能力 邮件审核,邮件撤回 邮件备份,邮件归档 个性化登录,对外名片 赠送专有域名 专家在线服务 版本对比详情 一体化的办公协作工具 企业微信集成邮件、即时沟通、文档、会议、日程、微盘等功能,为企业打造更高效的通讯与办公工具。 了解更多 高效的办公协作能力 可在邮件中插入聊天记录、文档、微盘文件、日程等,也可将文档内容添加至邮件正文中,高效组织邮件内容。 了解更多 功能强大,专业管理 归档、备份、搬家等功能,让管理更高效;日程邀约、审批邮件让使用更便捷。 了解更多 多重防护,纯净安全 基于微信亿级用户防护经验, 7天24小时安全监控;海量反垃圾邮件样本,自研反垃圾专利算法,让工作更纯净高效。 了解更多 全球互联,畅通无阻 企业邮箱具备强大的海外连接能力,海外投递IP分布在美国、新加坡、澳大利亚等多个国家,让邮件收发畅通无阻。 了解更多 无限账号,免费扩容 可按需购买VIP账号,分配给部分成员;其他成员可免费使用普通账号,普通账号不设上限。 了解更多 企业微信的基础邮箱服务 可以在企业微信内便捷地收发邮件,邮件与即时通讯、日程深度结合,提升协同办公效率。 无限账号,免费扩容 可按需购买VIP账号,分配给部分成员;其他成员可免费使用普通账号,普通账号不设上限。 了解更多 全球互联,畅通无阻 企业邮箱具备强大的海外连接能力,海外投递IP分布在美国、新加坡、澳大利亚等多个国家,让邮件收发畅通无阻。 了解更多 功能强大,专业管理 分级管理、归档、备份、搬家、审批等功能,让管理更高效;日程会议、通知公告、个性群发、保密邮件让使用更便捷。 了解更多 多终端专属体验 Foxmail、微信小程序、QQ邮箱与腾讯企业邮深度结合,手机与桌面客户端办公更加高效。 了解更多 多重防护,纯净安全 基于微信亿级用户防护经验, 7天24小时安全监控;海量反垃圾邮件样本,自研反垃圾专利算法,让工作更纯净高效。 了解更多 价格计算 买得越多 单价越低 最低 0.27元/天/人, 即可使用专业、安全的腾讯企业邮服务。 VIP账号数量: 购买小贴士: 建议为企业内经常使用邮件收发功能的成员购买VIP账号,可使用更多高级功能。其他用户可免费使用普通账号。 了解VIP账号 账号单价: ¥190 ¥190 购买年限: 总价: ¥950 ¥950 大客户专享优惠,请通过以下方式进行询价 企业微信扫码 联系企业微信客服 典型案例 超过3000万企业用户,正在使用腾讯企业邮 高等教育 了解详情 金融证券 了解详情 政府组织 了解详情 医疗机构 了解详情 互联网 了解详情 生活服务 了解详情 工业制造 了解详情 对外贸易 了解详情 典型案例 超过3000万企业用户,正在使用腾讯企业邮 工业制造 了解详情 生活服务 了解详情 互联网 了解详情 对外贸易 了解详情 政府组织 了解详情 金融证券 了解详情 医疗机构 了解详情 高等教育 了解详情 下载企业微信,即可使用企业邮箱 Mac桌面端 点击直接下载 Windows桌面端 点击直接下载 iOS版 扫描二维码下载 Android版 扫描二维码下载 第三方客户端设置帮助 公益计划 公益组织希望使用腾讯企业邮的所有服务,可申请加入我们的助力公益计划。 立即申请 已免费服务以下公益项目 腾讯志愿者 宝贝回家 卓如医疗慈善救助基金会 中国社会福利基金会 微信扫码 联系企业微信客服 企业微信扫码 联系企业微信客服 联系我们 企业邮箱公众号 微信扫码 联系企业微信客服 官方微博 支持与服务 开发者中心 帮助中心 用户手册 预约登记 更多 客户案例 安全中心 合作伙伴 公益计划 关于腾讯 | 用户协议 | 帮助中心 | 隐私政策 ©1998 - 2024 Tencent Inc. All Rights Reserved百度知道 - 信息提示
百度知道 - 信息提示
百度首页
商城
注册
登录
网页
资讯
视频
图片
知道
文库
贴吧采购
地图更多
搜索答案
我要提问
百度知道>提示信息
知道宝贝找不到问题了>_
该问题可能已经失效。返回首页
15秒以后自动返回
帮助
| 意见反馈
| 投诉举报
京ICP证030173号-1 京网文【2023】1034-029号 ©2024Baidu 使用百度前必读 | 知道协议
exm_百度百科
百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心收藏查看我的收藏0有用+10exm播报讨论上传视频网络流行语exm,网络流行语,是“excuse me”的缩写。 [1]网络上指对方的话或者谈论的事情表示震惊、感觉不可思议或疑惑不解时,打出“exm?”来表示自己的情绪。外文名exm性 质网络流行语词语来源是“excuse me”的缩写,原意是当别人说话没有听清时,委婉的要求别人再说一遍。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000excuse me为什么写成exm? - 知乎
excuse me为什么写成exm? - 知乎首页知乎知学堂发现等你来答切换模式登录/注册音乐英语如何看待/评价TAexcuse me为什么写成exm?关注者2被浏览247关注问题写回答邀请回答好问题添加评论分享1 个回答默认排序黄大纯乐观开朗很活泼。——希望未来的样子 关注简写。就,不明觉厉之类的发布于 2020-03-26 18:39赞同添加评论分享收藏喜欢收起写回答1 个回答被折叠(为什
耶鲁团队bioRxiv发文 | 一个细胞的膨胀:可视化的 “狂飙” - 知乎
耶鲁团队bioRxiv发文 | 一个细胞的膨胀:可视化的 “狂飙” - 知乎切换模式写文章登录/注册耶鲁团队bioRxiv发文 | 一个细胞的膨胀:可视化的 “狂飙”西湖欧米AI-empowered Omics Solutions研究背景及简介肉眼的探索局限人肉眼的可视范围往往存在局限,当涉足细胞微观结构的研究时往往被拒之门外,此时通常需要借助各类高分辨的显微设备等来突破肉眼的限制,从而实现微观层面的研究。荧光显微镜的好处在于提供了高对比度成像和高精度标记,但在样品成像范围内受限,不足以揭示细胞的精细结构。在电子显微镜中,样品的三维图像是可行的,然而往往需要几天到几周的连续数据采集以生成这些样品的图像。有什么方法可以打破仪器的限制?膨胀8000倍的细胞最近的1篇来自耶鲁大学Joerg Bewersdorf教授团队发布在bioRxiv上的研究报道,创新式地发明了一种名为“Unclear Microscopy”的技术,可以用于肉眼细胞的可视化!图1 文章标题BioRxiv: Unclearing Microscopy一个典型的Hela细胞,直径约40μm,如果将其线性扩展20倍,即体积扩展8000倍,则被纳入到肉眼的可视化范围内。然而随着细胞的膨胀,单个细胞的蛋白质含量(约1.1mM)将被稀释8000倍(约140nM)。这是一个难点,人眼的对比灵敏度有限,即使在理想条件下,也需要至少410倍高浓度(58μM)的高吸收性染料才能检测50μM宽和厚的物体。研究者最初的灵感来源于2015年的麻省理工学院Edward Boyden教授发表的一篇Science文章“Expansion Microscopy”,此后该团队如何就运用水凝胶技术实现细胞的放大上,不断改进创新,期间发表数篇文章,其中近期发表的这篇文章技术证明了以前只能通过超高分辨率荧光或电子显微镜方法才能获得的细胞3D超微结构,现通过将细胞的物理放大与染色相结合,即可产生可见的细胞对比度,使得微观结构最终可以通过借助普通的光学显微镜观察到。研究样本样本:Hela细胞,鼠脑;技术流程:使用Pan-ExM技术将细胞放大相应的倍数,用与生物素偶联的胺反应性NHS酯配体(NHS-PEG4-Biotin)进行染色,并与辣根过氧化物酶偶联的链霉亲和素(ST-HRP)进行孵育,将水凝胶样品切成约1mm的厚度,并用DAB或金属银清除,用水洗涤样品后可直接可视化。图2 Unclaring Microscopy基本工作流程研究结果1.手机拍摄下清晰可见细胞结构在典型的室内光线条件下,使用标准手机拍摄,未清洁的凝胶显示了单个哺乳动物细胞及其微观结构。研究发现金属银和DAB基质分别产生强烈的黑色和棕色显色对比,我们可以用肉眼非常容易地辨别细胞边界、细胞接触部位、细胞胞浆和细胞核。图3 手机拍摄下的细胞膨胀后图片2. 使用OI-DIC显微镜可观测到超微结构研究使用OI-DIC显微镜对1mm厚的膨胀和不透明的脑组织样本进行成像,发现可以观测到超微结构,包括线粒体的精细结构,推测的内质网小管、核仁等。图4 使用OI-DIC显微镜拍摄的脑组织中的3D超微结构文章小结文章末尾,作者也提到了该篇工作代表了用肉眼观察细胞微观结构的第一个有记录的例子,Unclearing Microscopy为广大公众也提供了一个机会,能让其感受到微观世界的魅力。图5 细胞经水凝胶膨胀,染色技术将细胞成分颜色对比度提高10w倍,因此细胞肉眼可见西湖欧米空间蛋白质组学——当“膨胀”碰上“蛋白质组学”西湖欧米自2022年9月29日以来,推出可膨胀的空间蛋白质组学服务ProteomEx,通过将组织样本结合水凝胶技术进行膨胀,结合蛋白质组学,精准实现空间位置的取样!目前,相关技术文章发表于Nature Communications上。图6 西湖欧米膨胀蛋白组文章 1. ProteomEx:膨胀512倍的细胞该技术最大可实现横向膨胀8倍,即体积膨胀512倍!在该膨胀范围下,最低可实现160个细胞的检测。2. ProteomEx:高兼容性ProteomEx空间蛋白质组学可进行多种组织样本的膨胀,如脑、肝、乳腺、肺等,并兼容多种染色方法。图7 膨胀胶与多种组织的高兼容性3. ProteomEx:成功实现不同脑区的空间蛋白质组学研究该篇文章将膨胀蛋白质组学技术应用于小鼠阿尔兹海默症的应用中,成功实现不同脑区蛋白质表达的检测。图8 基于膨胀的空间蛋白质组学技术:阿尔兹海默症小鼠应用实例在近几年的组学研究中,空间组学研究成果不断涌现,正逐渐成为一个新风口。组织异质性的解析,是近年来颇为热门的话题。若您对西湖欧米基于膨胀的空间蛋白质组服务感兴趣,欢迎您来电咨询。编译:江燕审校:刘晶晶如有意向,欢迎咨询联系我们 CONTACT US:邮箱:service@westlakeomics.com座机:0571-86780630参考文献:[1] Ones M’Saad, Michael Shribak, Joerg Bewersdorf. Unclearing Microscopy [J]. BioRxiv, 2022.[2] https://www.the-scientist.com/news-opinion/new-swelling-technique-makes-cells-visible-to-the-naked-eye-70902[3]Li L, Sun C, Sun Y, et al. Spatially resolved proteomics via tissue expansion [J]. Nature Communications. 2022, 13(1):7242. 发布于 2023-03-02 13:38・IP 属地浙江细胞可视化蛋白质组学赞同 1添加评论分享喜欢收藏申请
膨胀显微成像技术的原理及应用
膨胀显微成像技术的原理及应用
首页简介刊物概况数据库收录引证指标联系编辑部投稿征稿征稿范围与栏目设置投稿基本要求投稿方式及相关注意事项稿件审理程序稿件发表程序版权修改稿的书写排版要求参考文献著录审理费与版面费期刊订阅欢迎订阅网上订阅操作步骤编委会现任编委会青年编委历届编委会公告文件下载English
首页 >
过刊浏览>2023年第50卷第3期 >505-512. DOI:10.16476/j.pibb.2022.0225
最新录用
HTML阅读
XML下载
导出引用
引用提醒
膨胀显微成像技术的原理及应用
DOI:
10.16476/j.pibb.2022.0225
作者:
作者单位:
1)昆明理工大学省部共建非人灵长类生物医学国家重点实验室,昆明 650500;2)云南省灵长类生物医学重点实验室,昆明 650500;3)昆明理工大学生命科学与技术学院,昆明 650500
作者简介:
通讯作者:
中图分类号:
基金项目:
云南省自然科学基金(202001BC070001,202102AA100053) 资 助项目。
The Basic Principles and Application of Expansion Microscopy
Author:
Affiliation:
1)State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming650500, China;2)Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China;3)Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
Fund Project:
This work was supported by grants from The Natural Science Foundation of Yunnan Province (202001BC070001, 202102AA100053).
摘要
|
图/表
|
访问统计
|
参考文献
|
相似文献
|
引证文献
|
资源附件
|
文章评论
摘要:膨胀显微成像技术(expansion microscopy,ExM)是一种新型超分辨成像技术。该技术借助可膨胀水凝胶均匀地物理放大生物样本,在常规光学成像条件下实现超分辨成像。ExM适用于细胞、组织切片等多种类型生物样本。蛋白质、核酸、脂质等生物大分子均可借助ExM进行超分辨成像。ExM可与共聚焦显微镜、光片显微镜、超高分辨显微镜联合使用,进一步提高成像分辨率。近年来,多种从基础ExM拓展而来的衍生技术进一步促进了该技术的实际应用。本文综述了ExM及其衍生技术的基本原理、ExM与不同成像技术联用的研究进展及ExM在不同类型生物样本中的应用进展,并对ExM技术的发展前景做出展望。
Abstract:Expansion microscopy (ExM) is a new super-resolution imaging technique. With the aid of expandable hydrogel, biological samples are uniformly physically amplified and can be imaged in super resolution by using conventional optical imaging microscopes. In ExM, after immunofluorescence staining, gel embedding, protease digestion and water swelling, the relative distance of fluorescent labeled molecules inside the biological samples was increased, so the sample can bypass the optical diffraction limit in conventional fluorescence microscope to achieve the super-resolution imaging. ExM is widely suitable for many types of biological samples such as cell and tissue sections. Proteins, nucleic acids, lipids and other biological macromolecules can also be imaged by ExM. ExM can be combined with confocal microscopy, light-sheet microscopy and super-resolution microscopy to further improve imaging resolution. In recent years, a variety of derivative technologies have been developed from base ExM, which further promotes the practical application of this technology. Protein retention expansion microscopy (proExM) can avoid complicated sample preparation process and directly image endogenous fluorescent proteins. Magnified analysis of the proteome (MAP) was suitable for super-resolution imaging in large biological samples. Iterative expansion microscopy (iExM) can increase the final expansion factor of biological samples to 16-22 times by changing the gel embedding steps. Cryo-expansion microscopy (Cryo-ExM) can provide better image fidelity. Expansion fluorescent in situ hybridization (ExFISH) and Click-ExM can achieve super-resolution imaging in nonprotein biomolecules, such as RNA, lipids, and polysaccharides. Expansion pathology (ExPath) can be used for clinicopathologic specimens imaging. The combination of ExM and light-sheet microscope can improve the image resolution to super-resolution level in the deep imaging depth. The application of ExM in super-resolution microscopy can further increase the resolution of images to 10-30 nm. In this paper, we reviewed the basic principles of ExM and its derivative technology, the research progress of combining ExM with different imaging technologies, the application progress of ExM in observing different types of biological samples, and the prospective of spreading ExM technology in the future.
参考文献
相似文献
引证文献
引用本文
杨振宇,关淼,孙正龙.膨胀显微成像技术的原理及应用[J].生物化学与生物物理进展,2023,50(3):505-512
复制
分享
0
文章指标
点击次数:
下载次数:
HTML阅读次数:
引用次数:
历史
收稿日期:2022-05-18
最后修改日期:2023-02-11
接受日期:2022-07-29
在线发布日期: 2023-03-22
出版日期: 2023-03-20
扫码关注
生物化学与生物物理进展 ® 2024 版权所有
ICP:京ICP备05023138号-1 京公网安备 11010502031771号
百度知道 - 信息提示
百度知道 - 信息提示
百度首页
商城
注册
登录
网页
资讯
视频
图片
知道
文库
贴吧采购
地图更多
搜索答案
我要提问
百度知道>提示信息
知道宝贝找不到问题了>_
该问题可能已经失效。返回首页
15秒以后自动返回
帮助
| 意见反馈
| 投诉举报
京ICP证030173号-1 京网文【2023】1034-029号 ©2024Baidu 使用百度前必读 | 知道协议
《Nature Methods》水凝胶基扩展显微镜为探索更多挑战打开了大门! - 知乎
《Nature Methods》水凝胶基扩展显微镜为探索更多挑战打开了大门! - 知乎切换模式写文章登录/注册《Nature Methods》水凝胶基扩展显微镜为探索更多挑战打开了大门!水凝胶更多原创内容欢迎关注微信公众号「水凝胶」膨胀显微镜(ExM)由 Ed Boyden 的团队于 2015 年首次推出,是一种超分辨率技术,可以实现低于衍射极限的空间分辨率。与其他严重依赖先进光学系统的超分辨率方法不同,ExM主要使用传统显微镜进行操作。ExM 中的高分辨率是通过样品的物理放大来实现的。荧光标记的分子与水凝胶交联,随着水凝胶的膨胀和各向同性膨胀,信号在三个维度上几乎各向同性地拉伸。在对膨胀系数进行校正和失真分析之后,在传统的共聚焦显微镜上,在典型的大约四倍膨胀下,可以达到 70 nm 的分辨率。近年来,ExM进一步与其他超分辨率显微镜方法相结合,例如受激发射耗尽显微镜或单分子定位显微镜,以达到20 nm以下的分辨率。在本期Nature Methods 中,Laporte 等人 3 提出了一种令人兴奋的 ExM 类型,它提供了避免重化学固定的新选择,但仍然可以通过将细胞结构保持在其天然状态来实现高分辨率成像。在这项工作中,作者应用了传统的冷冻替代冷冻固定,并将其与超微结构 ExM 技术相结合,其中目标在水凝胶膨胀后被荧光标记(图 1)。Laporte 等人 3 通过观察不同的结构验证了他们的新技术(称为 cryo-ExM)的准确性和可重复性:例如,内质网、微管、线粒体和液-液相分离的类核糖体。这些结构的完整性和荧光性在扩展样品中也得到了很好的证实。此外,从技术上讲,这种组合遵循了ExM 的传统,因为它可以很容易地应用于许多实验室,而无需自动插入冷冻系统或复杂的光学系统。图1:水凝胶扩展显微镜的原理。cryo-ExM 与传统 ExM 有何不同?ExM 从细胞或组织的一系列化学固定开始,很大程度上依赖于这种固定的质量。广泛使用的多聚甲醛或用冷甲醇沉淀蛋白质可能会改变样品形态,因此可能会导致膨胀后的结构扭曲或破碎。因此,化学固定协议需要针对 ExM 中的许多特定应用进行优化,以消除固定或标记伪影,并且通常还需要使用其他超分辨率技术或电子显微镜对样品进行比较以确认其结构。然而,Cryo-ExM 站在冷冻固定的肩膀上,这已通过电子显微镜和其他超分辨率方法得到广泛证明,可以在分子尺度上保留许多亚细胞结构的天然结构。凭借这一优势,cryo-ExM 大大降低了以更高分辨率研究尚未深入研究的样品的障碍,使其适用范围更广。相关论文以题为Expansion microscopy opens the door to exploring more challenges发表在《Nature Methods》上。通讯作者是马克斯普朗克分子细胞生物学和遗传学研究所Mengfei Gao。参考文献:http://doi.org/10.1038/s41592-022-01396-4编辑于 2022-01-29 21:38自然科学显微镜《自然》(Nature)赞同 2添加评论分享喜欢收藏申请
Expansion microscopy: principles and uses in biological research | Nature Methods
Expansion microscopy: principles and uses in biological research | Nature Methods
Skip to main content
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Advertisement
View all journals
Search
Log in
Explore content
About the journal
Publish with us
Subscribe
Sign up for alerts
RSS feed
nature
nature methods
perspectives
article
Perspective
Published: 20 December 2018
Expansion microscopy: principles and uses in biological research
Asmamaw T. Wassie1,2,3,4 na1, Yongxin Zhao4,5 na1 & Edward S. Boyden1,2,3,4,6,7
Nature Methods
volume 16, pages 33–41 (2019)Cite this article
53k Accesses
245 Citations
86 Altmetric
Metrics details
Subjects
Molecular neuroscienceSuper-resolution microscopy
AbstractMany biological investigations require 3D imaging of cells or tissues with nanoscale spatial resolution. We recently discovered that preserved biological specimens can be physically expanded in an isotropic fashion through a chemical process. Expansion microscopy (ExM) allows nanoscale imaging of biological specimens with conventional microscopes, decrowds biomolecules in support of signal amplification and multiplexed readout chemistries, and makes specimens transparent. We review the principles of how ExM works, advances in the technology made by our group and others, and its applications throughout biology and medicine.
Access through your institution
Buy or subscribe
This is a preview of subscription content, access via your institution
Access options
Access through your institution
Access through your institution
Change institution
Buy or subscribe
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 12 print issues and online access251,40 € per yearonly 20,95 € per issueLearn moreRent or buy this articlePrices vary by article typefrom$1.95to$39.95Learn morePrices may be subject to local taxes which are calculated during checkout
Additional access options:
Log in
Learn about institutional subscriptions
Read our FAQs
Contact customer support
Fig. 1: ExM concept and example outcomes.Fig. 2: Applications of ExM in biology and medicine.Fig. 3: ExM decrowds biomolecules, facilitating post-expansion staining, signal amplification, and multiplexed readout.Fig. 4: Results of 25-nm-resolution imaging of neural circuitry and synapses with iExM.
ReferencesDunn, R. C. Near-field scanning optical microscopy. Chem. Rev. 99, 2891–2928 (1999).Article
CAS
Google Scholar
Dürig, U., Pohl, D. W. & Rohner, F. Near-field optical-scanning microscopy. J. Appl. Phys. 59, 3318–3327 (1986).Article
Google Scholar
Hell, S.W. Far-field optical nanoscopy. In Proc. 2010 23rd Annual Meeting of the IEEE Photonics Society (eds Jagadish, C. et al.) 3–4 (IEEE, New York, 2010).Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).Article
CAS
Google Scholar
Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015).Article
CAS
Google Scholar
Tanaka, T. et al. Phase transitions in ionic gels. Phys. Rev. Lett. 45, 1636–1639 (1980).Article
CAS
Google Scholar
Hausen, P. & Dreyer, C. The use of polyacrylamide as an embedding medium for immunohistochemical studies of embryonic tissues. Stain Technol. 56, 287–293 (1981).Article
CAS
Google Scholar
Cohen, Y., Ramon, O., Kopelman, I. J. & Mizrahi, S. Characterization of inhomogeneous polyacrylamide hydrogels. J. Polym. Sci. B Polym. Phys. 30, 1055–1067 (1992).Article
CAS
Google Scholar
Tillberg, P. W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992 (2016).Article
CAS
Google Scholar
Chen, F. et al. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13, 679–684 (2016).Article
CAS
Google Scholar
Chang, J.-B. et al. Iterative expansion microscopy. Nat. Methods 14, 593–599 (2017).Article
CAS
Google Scholar
Zhao, Y. et al. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat. Biotechnol. 35, 757–764 (2017).Article
CAS
Google Scholar
Chozinski, T. J. et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods 13, 485–488 (2016).Article
CAS
Google Scholar
Ku, T. et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol. 34, 973–981 (2016).Article
CAS
Google Scholar
Truckenbrodt, S. et al. X10 expansion microscopy enables 25-nm resolution on conventional microscopes. EMBO Rep. 19, e45836 (2018).Article
Google Scholar
Tsanov, N. et al. smiFISH and FISH-quant—a flexible single RNA detection approach with super-resolution capability. Nucleic Acids Res. 44, e165 (2016).Article
Google Scholar
Asano, S. M. et al. Expansion microscopy: protocols for imaging proteins and RNA in cells and tissues. Curr. Protoc. Cell Biol. 80, e56 (2018).Article
Google Scholar
Freifeld, L. et al. Expansion microscopy of zebrafish for neuroscience and developmental biology studies. Proc. Natl Acad. Sci. USA 114, E10799–E10808 (2017).Article
CAS
Google Scholar
Migliori, B. et al. Light sheet theta microscopy for rapid high-resolution imaging of large biological samples. BMC Biol. 16, 57 (2018).Article
Google Scholar
Hama, H. et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14, 1481–1488 (2011).Article
CAS
Google Scholar
Susaki, E. A. et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157, 726–739 (2014).Article
CAS
Google Scholar
Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).Article
CAS
Google Scholar
Murakami, T. C. et al. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat. Neurosci. 21, 625–637 (2018).Article
CAS
Google Scholar
Zhang, Y. S. et al. Hybrid microscopy: enabling inexpensive high-performance imaging through combined physical and optical magnifications. Sci. Rep. 6, 22691 (2016).Article
CAS
Google Scholar
Aoki, T., Tsuchida, S., Yahara, T. & Hamaue, N. Novel assays for proteases using green fluorescent protein-tagged substrate immobilized on a membrane disk. Anal. Biochem. 378, 132–137 (2008).Article
CAS
Google Scholar
Nicholls, S. B. & Hardy, J. A. Structural basis of fluorescence quenching in caspase activatable-GFP. Protein Sci. 22, 247–257 (2013).Article
CAS
Google Scholar
Deshpande, T. et al. Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia 65, 1809–1820 (2017).Article
Google Scholar
Crittenden, J. R. et al. Striosome-dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons. Proc. Natl Acad. Sci. USA 113, 11318–11323 (2016).Article
CAS
Google Scholar
Decarreau, J. et al. The tetrameric kinesin Kif25 suppresses pre-mitotic centrosome separation to establish proper spindle orientation. Nat. Cell Biol. 19, 384–390 (2017).Article
CAS
Google Scholar
Suofu, Y. et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl Acad. Sci. USA 114, E7997–E8006 (2017).Article
CAS
Google Scholar
Wang, Y. et al. Combined expansion microscopy with structured illumination microscopy for analyzing protein complexes. Nat. Protoc. 13, 1869–1895 (2018).Article
CAS
Google Scholar
Orth, A. et al. Super-multiplexed fluorescence microscopy via photostability contrast. Biomed. Opt. Express 9, 2943–2954 (2018).Article
Google Scholar
Chozinski, T. J. et al. Volumetric, nanoscale optical imaging of mouse and human kidney via expansion microscopy. Sci. Rep. 8, 10396 (2018).Article
Google Scholar
Tsai, A. et al. Nuclear microenvironments modulate transcription from low-affinity enhancers. eLife 6, e28975 (2017).Article
Google Scholar
Jiang, N. et al. Superresolution imaging of Drosophila tissues using expansion microscopy. Mol. Biol. Cell 29, 1413–1421 (2018).Article
CAS
Google Scholar
Cahoon, C. K. et al. Superresolution expansion microscopy reveals the three-dimensional organization of the Drosophila synaptonemal complex. Proc. Natl Acad. Sci. USA 114, E6857–E6866 (2017).Article
CAS
Google Scholar
Sümbül, U. et al. Automated scalable segmentation of neurons from multispectral images. In Advances in Neural Information Processing Systems 29 (eds Lee, D. D. et al.) 1912–1920 (NIPS Foundation, La Jolla, CA, 2016).Mosca, T. J., Luginbuhl, D. J., Wang, I. E. & Luo, L. Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. eLife 6, 1–29 (2017).Article
Google Scholar
Wang, I. E., Lapan, S. W., Scimone, M. L., Clandinin, T. R. & Reddien, P. W. Hedgehog signaling regulates gene expression in planarian glia. eLife 5, e16996 (2016).Article
Google Scholar
Halpern, A. R., Alas, G. C. M., Chozinski, T. J., Paredez, A. R. & Vaughan, J. C. Hybrid structured illumination expansion microscopy reveals microbial cytoskeleton organization. ACS Nano 11, 12677–12686 (2017).Article
CAS
Google Scholar
Artur, C. G. et al. Plasmonic nanoparticle-based expansion microscopy with surface-enhanced Raman and dark-field spectroscopic imaging. Biomed. Opt. Express 9, 603–615 (2018).Article
Google Scholar
Villaseñor, R., Schilling, M., Sundaresan, J., Lutz, Y. & Collin, L. Sorting tubules regulate blood-brain barrier transcytosis. Cell Rep. 21, 3256–3270 (2017).Article
Google Scholar
Li, R., Chen, X., Lin, Z., Wang, Y. & Sun, Y. Expansion enhanced nanoscopy. Nanoscale 10, 17552–17556 (2018).Article
CAS
Google Scholar
Treweek, J. B. et al. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat. Protoc. 10, 1860–1896 (2015).Article
CAS
Google Scholar
Unnersjö-Jess, D. et al. Confocal super-resolution imaging of the glomerular filtration barrier enabled by tissue expansion. Kidney Int. 93, 1008–1013 (2018).Article
Google Scholar
Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).Article
CAS
Google Scholar
Hu, F. et al. Supermultiplexed optical imaging and barcoding with engineered polyynes. Nat. Methods 15, 194–200 (2018).Article
CAS
Google Scholar
Kumar, A. et al. Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Sci. Rep. 7, 40360 (2017).Article
CAS
Google Scholar
Gao, M. et al. Expansion stimulated emission depletion microscopy (ExSTED). ACS Nano 12, 4178–4185 (2018).Article
CAS
Google Scholar
Elmore, J. G. et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. J. Am. Med. Assoc. 313, 1122–1132 (2015).Article
CAS
Google Scholar
Choi, H. M. T. et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 28, 1208–1212 (2010).Article
CAS
Google Scholar
Choi, H. M. T., Beck, V. A. & Pierce, N. A. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano 8, 4284–4294 (2014).Article
CAS
Google Scholar
Lin, R. et al. A hybridization-chain-reaction-based method for amplifying immunosignals. Nat. Methods 15, 275–278 (2018).Article
CAS
Google Scholar
Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).Article
CAS
Google Scholar
Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).Article
CAS
Google Scholar
Yoon, Y.-G. et al. Feasibility of 3D reconstruction of neural morphology using expansion microscopy and barcode-guided agglomeration. Front. Comput. Neurosci. 11, 97 (2017).Article
Google Scholar
Lubeck, E. & Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743–748 (2012).Article
CAS
Google Scholar
Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).Article
CAS
Google Scholar
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).Article
Google Scholar
Moffitt, J. R. et al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 113, 11046–11051 (2016).Article
CAS
Google Scholar
Wang, G., Moffitt, J. R. & Zhuang, X. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci. Rep. 8, 4847 (2018).Article
Google Scholar
Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).Article
CAS
Google Scholar
Wang, Y. et al. Rapid sequential in situ multiplexing with DNA-exchange-imaging in neuronal cells and tissues. Nano Lett. 17, 6131–6139 (2017).Article
CAS
Google Scholar
Download referencesAcknowledgementsE.S.B. acknowledges the NIH (1R01NS102727, 1R01EB024261, 1R41MH112318, 1R01MH110932, 1RM1HG008525, and Director's Pioneer Award 1DP1NS087724), the Open Philanthropy Project, DARPA, John Doerr, the NSF (grant 1734870), the MIT Aging Brain Initiative/Ludwig Foundation, the HHMI-Simons Faculty Scholars Program, IARPA D16PC00008, the US Army Research Laboratory and the US Army Research Office under contract/grant number W911NF1510548, the US–Israel Binational Science Foundation (grant 2014509), the MIT Media Lab, the MIT Brain and Cognitive Sciences Department, and the McGovern Institute. A.T.W. acknowledges the Hertz Foundation Fellowship.Author informationAuthor notesThese authors contributed equally: Asmamaw T. Wassie and Yongxin Zhao.Authors and AffiliationsDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USAAsmamaw T. Wassie & Edward S. BoydenDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USAAsmamaw T. Wassie & Edward S. BoydenMcGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USAAsmamaw T. Wassie & Edward S. BoydenMedia Lab, Massachusetts Institute of Technology, Cambridge, MA, USAAsmamaw T. Wassie, Yongxin Zhao & Edward S. BoydenDepartment of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USAYongxin ZhaoKoch Institute, Massachusetts Institute of Technology, Cambridge, MA, USAEdward S. BoydenCenter for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USAEdward S. BoydenAuthorsAsmamaw T. WassieView author publicationsYou can also search for this author in
PubMed Google ScholarYongxin ZhaoView author publicationsYou can also search for this author in
PubMed Google ScholarEdward S. BoydenView author publicationsYou can also search for this author in
PubMed Google ScholarContributionsA.T.W., Y.Z., and E.S.B. all contributed to the writing of the manuscript and have read and agreed to its content.Corresponding authorCorrespondence to
Edward S. Boyden.Ethics declarations
Competing interests
E.S.B. is a co-inventor on multiple patents related to ExM and is also a co-founder of a company (http://extbio.com/) commercializing ExM. Y.Z. and A.T.W. are inventors on several inventions related to ExM.
Additional informationPublisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary InformationSupplementary Tables 1 and 2, and Supplementary Notes 1 and 2Rights and permissionsReprints and permissionsAbout this articleCite this articleWassie, A.T., Zhao, Y. & Boyden, E.S. Expansion microscopy: principles and uses in biological research.
Nat Methods 16, 33–41 (2019). https://doi.org/10.1038/s41592-018-0219-4Download citationReceived: 15 February 2018Accepted: 10 October 2018Published: 20 December 2018Issue Date: January 2019DOI: https://doi.org/10.1038/s41592-018-0219-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Morphological analysis of descending tracts in mouse spinal cord using tissue clearing, tissue expansion and tiling light sheet microscopy techniques
Jiongfang XieRuili FengLiang Gao
Scientific Reports (2023)
iU-ExM: nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy
Vincent LouvelRomuald HaasePaul Guichard
Nature Communications (2023)
Light-sheets and smart microscopy, an exciting future is dawning
Stephan DaetwylerReto Paul Fiolka
Communications Biology (2023)
Multielement Z-tag imaging by X-ray fluorescence microscopy for next-generation multiplex imaging
Merrick StrottonTsuyoshi HosoganeBernd Bodenmiller
Nature Methods (2023)
Imaging pathology goes nanoscale with a low-cost strategy
Brendan R. GallagherYongxin Zhao
Nature Nanotechnology (2023)
Access through your institution
Buy or subscribe
Access through your institution
Change institution
Buy or subscribe
Advertisement
Explore content
Research articles
Reviews & Analysis
News & Comment
Current issue
Collections
Follow us on Twitter
Subscribe
Sign up for alerts
RSS feed
About the journal
Aims & Scope
Journal Information
Journal Metrics
Our publishing models
About the Editors
Research Cross-Journal Editorial Team
Reviews Cross-Journal Editorial Team
Editorial Values Statement
Editorial Policies
Content Types
Web Feeds
Contact
Publish with us
Submission Guidelines
For Reviewers
Language editing services
Submit manuscript
Search
Search articles by subject, keyword or author
Show results from
All journals
This journal
Search
Advanced search
Quick links
Explore articles by subject
Find a job
Guide to authors
Editorial policies
Nature Methods (Nat Methods)
ISSN 1548-7105 (online)
ISSN 1548-7091 (print)
nature.com sitemap
About Nature Portfolio
About us
Press releases
Press office
Contact us
Discover content
Journals A-Z
Articles by subject
Protocol Exchange
Nature Index
Publishing policies
Nature portfolio policies
Open access
Author & Researcher services
Reprints & permissions
Research data
Language editing
Scientific editing
Nature Masterclasses
Research Solutions
Libraries & institutions
Librarian service & tools
Librarian portal
Open research
Recommend to library
Advertising & partnerships
Advertising
Partnerships & Services
Media kits
Branded
content
Professional development
Nature Careers
Nature
Conferences
Regional websites
Nature Africa
Nature China
Nature India
Nature Italy
Nature Japan
Nature Korea
Nature Middle East
Privacy
Policy
Use
of cookies
Your privacy choices/Manage cookies
Legal
notice
Accessibility
statement
Terms & Conditions
Your US state privacy rights
© 2024 Springer Nature Limited
Close banner
Close
Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.
Email address
Sign up
I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
Close banner
Close
Get the most important science stories of the day, free in your inbox.
Sign up for Nature Briefing
用于 EXM 的 X 系列测量应用软件 | Keysight
用于 EXM 的 X 系列测量应用软件 | Keysight
这是您想要的页面.
查看搜索结果:
Choose a country or area to see content specific to your location
启用浏览器 cookies,以便改善站点的功能和性能。
Enable Javascript and browser cookies for improved site capabilities and performance.
Toggle Menu
在线咨询
联系是德科技
欢迎
我的个人信息
退出
登录
注册
确认您的国家或地区
中国
中国
日本
繁體中文
한국
Brasil
Canada
Deutschland
France
India
Malaysia
United Kingdom
United States
Australia
Austria
Belgium
Denmark
Finland
Hong Kong, China
Ireland
Israel
Italy
Mexico
Netherlands
Singapore
Spain
Sweden
Switzerland (German)
Thailand
Vietnam
更多…
请确认
确认您所在的国家/地区,以便获取相应的价格、促销、活动和联系信息等。
Select locale
确认
产品与服务
示波器
InfiniiVision数字式存储示波器
实时示波器――合规性测试
等效时间采样示波器
便携式示波器-手持、模块化和USB示波器
示波器软件
示波器探头
全部示波器
分析仪
频谱分析仪(信号分析仪)
网络分析仪
逻辑分析仪
协议分析仪和训练器
误码率测试仪
噪声系数分析仪和噪声源
高速数字化仪和多通道数据采集解决方案
交流电源分析仪
直流电源分析仪
材料测试设备
器件电流波形分析仪
参数/器件分析仪和曲线追踪器
仪表
数字万用表DMM
相位噪声测量
功率计 + 功率传感器
53200 系列射频和通用频率计数器/计时器
LCR 表和阻抗测量产品
飞安计、皮安计和静电计
发生器,源和电源
信号发生器(信号源)
波形和函数发生器
任意波形发生器
脉冲发生器产品
HEV / EV / 电网仿真器和测试系统
直流电源
源表模块
直流电子负载
交流电源
软件
EDA 软件
仪器测量软件
仪器工作流程软件
软件测试
所有设计及测试软件
无线
信道仿真解决方案
物联网合规性测试解决方案
无线路测
无线接入和核心网测试
无线分析仪
无线信道仿真仪
5G NR 基站测试
空中接口测试
模块化仪器
PXI 产品
AXIe 产品
数据采集系统DAQ
USB 产品
VXI 产品
参考解决方案
所有模块化产品
网络测试与安全
应用和威胁情报
云测试
网络培训仿真器
网络测试硬件
综合流量发生器
协议和负载测试
网络安全测试工具
网络建模
全部网络安全和测试
网络可视性
旁路交换机
时钟同步
云可视性
Network and Application Monitoring
网络流量汇聚设备(NPB)
网络分流器-是德科技 Keysight
所有网络可视化产品
服务
KeysightCare
校准服务
维修服务
技术更新服务
测试即服务(TaaS)
网络/安全服务
咨询服务
Financial Services
Education Services
Keysight Support Portal
Used Equipment
所有服务
其他产品
在线ICT测试系统-ICT测试仪器
面向特定应用的测试系统和组件
参数测试解决方案
光通信测试与测量产品
激光干涉仪和校准系统
单片激光合路器与精密光学产品
毫米波和微波器件
所有产品、软件和服务
了解
资源
使用场景
行业
活动
博客
产品专区
行业
Inside Keysight
关于 Keysight
购买
支持
是德科技产品支持
软件下载中心
欢迎
|
Exit Procurement Session
View and Transfer Cart
Discard Cart and End Procurement Session
您希望搜索哪方面的内容?
搜索
MXG Signal Generator
ENA-X Network Analyzer
UXM for Wi-Fi 7
Artificial Intelligence
寻找解决方案
需要技术支持
参加课程
查找活动
原厂翻新仪器
KeysightCare
在线购买
建议的搜索
No product matches found - System Exception
符合的结果
查看所有搜索结果
无线测试平台软件
用于 EXM 的 X 系列测量应用软件
这些用于 EXM 无线测试仪的应用软件可提供支持各种标准的测量,在生产过程中对多制式蜂窝和无线连通性器件进行测试。
Compare Models
借助适用于 EXM 无线测试仪的 X 系列测量应用软件,您可以轻松实现最艰巨的生产目标,进一步加快目前多制式器件的上市速度。这些符合标准且适用于特定技术的蜂窝和无线连通性测量应用软件可帮助您快速启动试生产,优化全面量产过程。利用 X 系列测量应用软件和 EXM,您可以从容应对当前挑战并满足未来的需求。
支持您对设计进行表征和故障诊断,并快速创建生产测试代码。
建立在适用于台式信号分析仪的 X 系列测量应用软件库的基础上
Protect Your Innovation Investment
KeysightCare
Proactively receive updates and enhancements, faster response times, and access to Keysight experts.
软件许可期限和类型
是德科技软件许可证选件为您提供灵活的选择和强有力的支持。 请选择许可期限、类型,妥善控制预算。
是德科技软件管理器
管理您拥有的是德科技软件,查看并索取许可证和软件更新。
Featured Resources for 用于 EXM 的 X 系列测量应用软件
Configuration Guides
2023.03.17
E6640A EXM Wireless Test Set
The E6640A EXM wireless test set scales with your production needs for testing cellular and WLAN chipsets.
2023.03.17
Flyers
2019.08.27
E6640A EXM Wireless Test Set
The EXM wireless test set is scalable to meet your production needs. It delivers the speed, accuracy and port density you need to ramp up rapidly and optimize full-volume manufacturing.
2019.08.27
查看所有资源
Want help or have questions?
Contact Us
Back to Top
查看
产品与服务
解决方案
行业
活动
是德科技云课堂
翻新设备
Insights
成功案例
资源
博客
社区
合作伙伴
支持
是德科技产品支持
管理软件许可证
产品订单状态
部件
关于 Keysight
新闻
投资者关系
品质与安全
企业社会责任
多元化、公平性和包容性
供应链透明化
招贤纳士
© 是德科技 2000–2024
隐私
网站地图
条款
商标致谢
反馈
京ICP备20005161号
京公网安备 11010502040140 号